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Abstract: Executive functions are a set of cognitive tools that helps in navigating through 

a complex and unpredictable world. Prominent research has extensively evaluated the 

neural basis of executive functions in psychiatric disorders. Particularly, inferences on 

whether obsessive- compulsive disorder and anorexia nervosa present with similar brain 

activity whilst performing an executive function task were raised. This is due to the high 

comorbidity and shared symptomatology between the two disorders. Therefore, a 

systematic review was conducted to synthesize research that applied executive function 

tasks during functional magnetic resonance imaging in obsessive-compulsive disorder and 

anorexia nervosa. Following the PRISMA guidelines, 43 studies comparing the executive 

performance of patients of each disorder and healthy participants were chosen. This review 

revealed that although both disorders may activate similar brain areas, they may be 

engaging in diverse neural pathways for each executive function task. Conclusively, 

common notions on increased self-referential processing and discrepancy between internal 

and external models were given by most of the included studies. The evidence for 

comparing neural activation in both disorders was conflicting and incongruous. More 

research using consistent experimental paradigms and assessing both disorders 

concurrently is required. 

Keywords: executive function, obsessive-compulsive disorder, anorexia nervosa,        

functional magnetic resonance imaging 
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INTRODUCTION 

Adaptability is born out of the ability to produce non-automatic responses in face of a world 

of unpredictability and complexity (Barkley, 2001; Hawkins & Blakeslee, 2007). Fundamentally, 

executive functions are perceived to embody adaptation and learning. Although commonly 

referred to as cognitive tools, executive functions could be explained as the inherent drive to 

harmonize internal models with external realities (Pezzulo, 2012). Through planning, anticipating, 

and reflecting, one can attain perseverance and a sense of integrity and direction. Recent research 

has commenced towards explaining executive functions through new lenses. Traditionalistic views 

asserted that the brain merely reacts to upcoming stimuli; however, prevailing views contend that 

the brain is in a dynamic cycle where it plans, anticipates and predicts upcoming stimuli and 

actively updates any predictive errors to enable behaviour with intention and purpose (Kopp, 2012; 

Parr et al., 2023; Pezzulo, 2012). 

There is no doubt that altered executive functioning could lead to disrupted self- 

governance (Barkley, 2001). Research in psychology and psychiatry have emphasized the 

importance of studying changes in executive function and cognitive control in psychiatric 

disorders. Prominently, results have shown compromised abilities in accurate decision making 

(Cáceda et al., 2014; Scholl & Klein-Flügge, 2017); a dissonance between desired goals and 

actions taken (Gillan et al., 2015; Gillan et al., 2016; Griffiths et al., 2014; Voon et al., 2017); and 

inability to produce accurate predictions and update internal models (Doll et al., 2012; Gradin et 

al., 2011; Stephan & Mathys, 2014). 

Research postulates that obsessive-compulsive disorder (OCD) and anorexia nervosa (AN) 

might share similar cognitive dysfunctions and neural mechanisms. With results showing high 

comorbidity between these disorders (Drakes et al., 2021; Mandelli et al., 2020; Pollack & 

Forbush, 2013); shared symptomatology (Altman & Shankman, 2009; Latif & Moulding, 2024; 

Williams et al., 2022); and genetic relatedness (Yilmaz et al., 2018), it is intuitive to see whether 

they exhibit similar executive functions and neural mechanisms. OCD is popularly characterised 

through the well-known ‘OCD Loop’, in which unwanted and intrusive obsessions give rise to 

anxious feelings that could only be relieved by performing ritual habits or compulsions, and the 

cycle perpetuates (Laposa et al., 2018; Robbins et al., 2011; Salkovskis, 1985; Taylor et al., 2007). 

Similarly, anorexia nervosa has shown to exhibit a similar cycle. Obsessions and unwanted 

negative thoughts about weight, appearance and food rises anxiety levels, which inevitably leads 

to compulsive actions such as body checking, purging and restricting (Matsunaga et al., 1999; 

Shafran, 2002; Sherman et al., 2006). Likewise, these compulsions only lead to short-lived relief. 

Here, one can observe a profound struggle with the very essence of executive control. A shift from 

conscious deliberation of aligning goals with actions to a manifestation of routines and automated 

responses is seen. 

Changes in executive control in patients with AN or OCD is observed throughout the 

literature. For instance, a large sample of patients with AN were assessed using the Wisconsin 

Card Sorting Task and were compared to healthy participants (Tchanturia et al., 2012). Results 

revealed that patients faced difficulty and performed worse than healthy controls. High 

preservative errors in both patients with active illness and recovered patients attests to the notion 

that eating disorders have impaired executive functioning, specifically cognitive flexibility and 
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inhibition of prepotent responses (Tchanturia et al., 2012). Similar conclusions were found when 

comparing the performance of OCD patients and healthy controls in a variety of executive 

functioning tasks such as go/no-go task, stop-signal task, Wisconsin Card Sorting task (WCST), 

and n-back task (Martínez-Esparza et al., 2021; Youssef et al., 2020). Sternheim et al.’s (2022) 

study has highlighted the importance of self-reported measures alongside executive function tasks, 

explaining that both AN and OCD patients self-reported more inflexibility did not link to their 

actual performance. 

Despite such evidence, opposing results were identified. Although both patient groups 

present with executive deficits, neuroimaging outcomes differed. To explicate, Thomas et al.’s 

(2022) review has concluded that a divergence between behavioural performance and neural 

activity between AN and OCD patients. In other words, even if both patient groups present with 

similar executive deficits in cognitive-behavioural tasks, the underlying neural mechanism 

functions differently. This was further supported by Li et al. (2023), in which poor performance in 

inhibitory tasks was not linked to similar brain activity in eating disorders and OCD. Evidence 

from previous reviews has mainly centred on domain-based analysis such as inhibition, cognitive 

flexibility, and working memory. However, much of the research have used different executive 

function tasks to assess the same domain. This could lead to confusions due to (1) different 

operationalizations of the same domain, (2) tasks may engage in selective and specific cognitive 

processes, and (3) the same task can measure many domains, making it difficult to isolate one 

domain to a specific task. The argument of whether to measure executive function as domain- 

general or domain-specific processes or to assess it through domain-based or task-based analysis 

has been discussed in past research (for a deeper read, see Assem et al., 2024; Chan et al., 2007; 

Jurado & Rosselli, 2007; Löffler et al., 2024). Therefore, the following review will aim to 

synthesize research that assessed executive function in OCD and AN using a task-based approach. 

METHODS 

Literature Search and Study Selection 

This systematic review was carried out using the PRISMA 2020 Guidelines (Page et al., 

2021). Both Scopus and PubMed were used pinpoint functional magnetic resonance imaging 

studies examining executive function in OCD and AN until 17th November 2024. The search 

strategy consisted of five items: population (OCD or AN); fMRI imaging; executive function 

domains; and executive functioning tasks. The full detailed search strategy can be found in the 

Appendix. After duplicates were removed, M.S and A.A both independently screened the titles 

and abstracts of the remaining studies and assessed against the eligibility criteria. Studies that 

coincided with the eligibility criteria were taken for full-text examination. Any disagreements were 

resolved through discussions and reaching consensus. 

Eligibility Criteria 

Inclusion criteria consisted of the following: 

1. Articles to be published in peer-reviewed journals, in English, with full-text access. 

2. Articles to be published from 2000 to 2024. 

3. Authors report that participants are diagnosed with OCD or AN through a standardized 

diagnostic criterion (e.g. DSM-5) 
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4. All participants (both healthy controls and patient group) must perform executive function 

tasks (e.g. go/no-go; n-back; WCST) during fMRI scanning. 

Exclusion criteria included the following: 

1. Authors report using the same subject datasets. 

2. Participants undergo an executive function task that includes affective or food stimuli. 

3. Participants performed executive function task during other forms of neuroimaging 

techniques. 
4. Participants performed executive function tasks outside the fMRI scanner. 

5. Participants undergo intervention or cognitive training programs prior to the fMRI scan 

(unless fMRI results were reported prior to the intervention/training programs). 

Data Extraction 

All chosen studies were divided into two folders and were uploaded on Zotero (a reference 

manager software). Data extraction was performed independently by each reviewer; however, all 

information was uploaded on a shared Excel spreadsheet for cross-validation. Important 

information that was looked for were: study characteristics (e.g. authors and year of publication); 

sample characteristics (e.g. age); fMRI analysis and executive function paradigm used; and case- 

control contrasts. Full study details can be found in Tables 1 and 2 (in the Appendix). 

Quality Assessment 

Quality assessment was conducted for the included articles using the Standard Quality 

Assessment Criteria (SQAC; Kmet et al., 2004; Wollesen et al., 2019). Quality assessment was 

based on the following criteria: (1) question and objective of study is sufficiently described, (2) 

study design is identified and appropriate to study’s research question, (3) information on sample 

selection, input variables, and inclusion/exclusion criteria are described and appropriate, (4) 

sufficient description of sample demographic characteristics are given, (5) outcome and exposure 

measures are precisely described and defined, (6) study’s methodological analyses are described 

and appropriate, (7) reports of estimates of variance in results are provided, (8) results are reported 

sufficiently in detail, (9) all conclusions are supported by the data. Points for each criterion were 

as follows: 2 points if criteria are fulfilled, 1 point if criteria are partially fulfilled, 0 points if 

criteria are not fulfilled. Total quality score is out of 18, and a minimum score of 14 (75-77%) is 

required for a study to be considered a high-quality study. 

RESULTS 

Study Selection 

A total of 332 studies were obtained in the literature search: 86 studies from PubMed and 

238 studies from Scopus. With regards to research that included OCD patients, a total of 230 

studies were obtained (n = 64 PubMed; n = 166 Scopus). After excluding 105 studies due to 

inappositeness and 54 studies were removed due to duplication, 71 studies were chosen for full- 

text examination. Out of the 71, 43 studies were excluded for reasons such as: EF tasks were done 

outside the fMRI scanner; fMRI results were reported post-treatment; EF tasks included an 

emotional stimulus; same sample datasets were used. Moreover, 3 studies were found from 

previous literature reviews (Gruner & Pittenger, 2016; Nakao et al., 2014; Saxena et al., 2009). 
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Therefore, a total of 31 fMRI studies that were concerned with executive function tasks in OCD 

patients were selected for this review. 

With regards to research that included AN patients, a total of 94 studies were obtained (n 

= 22 PubMed; n = 72 Scopus). A total of 22 studies were chosen for full-text examination after 62 

incompatible studies and 10 duplicates were excluded. After full-text examination, 13 studies were 

excluded due to the following reasons: participants were stress-induced; participants had to 

perform physical activity; participants were either hungry or satiated during fMRI scanning; food 

and affective stimuli was included; EF tasks were taken outside fMRI. Backward literature search 

extracted 4 additional studies (Fuglset et al., 2016; Kappou et al., 2021). This resulted in a total of 

13 fMRI studies that analysed executive function tasks in AN patients included in this review. 

High quality scores (threshold of >=14, 75-77%) were given to 37 studies. The remaining 

6 studies received a good quality score, with scores ranging from 12-13 (66-72%), and thus were 

not excluded from the study. Overview of the scores can be found in the Appendix. 

Study Characteristics 

The final 43 chosen studies consisted of 2,068 participants, with sample sizes varying from 

15 to 100. Thirty-one of OCD-focused studies and seven of AN-focused studies included adult 

samples (ages ranging from 21 to 51), with three OCD-focused studies and six AN-focused studies 

included adolescent samples (ages ranging from 13 to 18). 

Executive Function Tasks 

The studies addressing OCD examined the following executive functioning tasks: Go/No- 

Go (n = 7), N-back (n = 6), Task-Switch (n = 4), Stroop (n = 4), Tower of London (n = 3). Other 

tasks included Stop-Signal (n = 3), Simon Task (n = 1), Flanker Task (n = 2), Wisconsin Card 

Sorting Task (WCST, n = 2), Item-Recognition Working Memory Task (n = 1), and Imagination, 

Suppression and Erase Task (n = 1). 

In terms of AN-targeted studies, most common executive functioning tasks used were the 

Go/No-Go Task (n = 3) and the WCST (n = 3). Other tasks included Set-Shift (n = 2), Stop-Signal 

(n = 1), Target-Detection Task (n = 1), N-back (n = 1), Implicit Sequence Learning Task (n = 1), 

Embedded Figures Task (n = 1). 

fMRI data analysis 

While almost all studies have applied general linear modeling (GLM), psychophysiological 

interactions (PPI; n = 7) and functional connectivity (FC; n = 4) have been used. Whole-brain 

analysis was conducted in 89% of studies (n = 27 OCD-focused studies; n = 13 AN-focused 

studies), whilst 69% of studies used region of interest analysis (ROI; n = 23 OCD-focused studies; 

n = 8 AN-focused studies). 

Brain Activation in OCD and AN 

Brain regions that were reported in at least 50% of the studies were taken into 

consideration. In the following results, numbers in brackets refer to subregions. Subregions were 

counted by each instance they were reported, acknowledging that the same subregion has been 

reported by more than one study. Twenty out of 32 OCD-specific studies have reported more 

activation in healthy controls compared to OCD in frontal (n = 26), cingulate (n = 20), temporal 



  
 

102 

 

(n = 20), sensorimotor (n = 15), subcortical and limbic regions (n = 21) (Cocchi et al., 2011; De 

Wit et al., 2012; Fitzgerald et al., 2005; Gu et al., 2007; Han et al., 2011; Heinzel et al., 2017; Kang 

et al., 2012; Koch et al., 2012; Koçak et al., 2011; Masharipov et al., 2023; Morein-Zamir et al., 

2015; Page et al., 2009; Remijnse et al., 2013; Roth et al., 2007; Schlösser et al., 2010; Thorsen et 

al., 2020; Tolin et al., 2013; Vaghi et al., 2017; Van Den Heuvel et al., 2005). 

Twenty-three out of 32 OCD-focused studies have reported more activation in OCD 

compared to HC in frontal (n = 29), temporal (n = 13), parietal (n = 17), and sensorimotor regions 

(n = 19) (De Wit et al., 2012; Fitzgerald et al., 2005; Fuglset et al., 2016; Gruner & Pittenger, 

2016; Gu et al., 2007; Han et al., 2011; Heinzel et al., 2017; Henseler et al., 2008; Hough et al., 

2016; Kang et al., 2012; Kappou et al., 2021; Kim et al., 2021; Koçak et al., 2011; Masharipov et 

al., 2023; Morein-Zamir et al., 2015; Nakao et al., 2008; Page et al., 2009; Remijnse et al., 2013; 

Roth et al., 2007; Schlösser et al., 2010; Thorsen et al., 2020; Tolin et al., 2013; Vaghi et al., 2017; 

Vanderwee et al., 2003). 

Seven out of 13 AN-focused studies reported more activation in HC compared to AN in 

frontal (n = 6), cingulate (n = 4), sensorimotor (n = 5), occipital (n = 7), subcortical (n = 5), insula 

and opercular regions (n = 4; Castro-Fornieles et al., 2019; Sato et al., 2013; Suttkus et al., 2021; 

Wierenga et al., 2014; Zastrow et al., 2009). 

Seven out of 13 AN-focused studies reported more activation in AN compared to HC in 

prefrontal (n = 5), parietal (n = 4), and occipital regions (n = 9) (Castro-Fornieles et al., 2019; Lao- 

Kaim et al., 2015; Lock et al., 2010; Noda et al., 2021; Van Autreve et al., 2016; Wierenga et al., 

2014). 

Figures 1 and 2 show common brain area activation patterns reported by most studies (refer 

to the Appendix). In OCD, hyperactivation was seen in the following brain areas: middle frontal 

gyrus (MFG); inferior frontal gyrus (IFG); precentral gyrus (PRG); postcentral gyrus (PoCG); 

inferior parietal lobule (IPL); supramarginal gyrus (SMG); and pre-supplementary motor area (pre- 

SMA; Cocchi et al., 2011; De Vries et al., 2013; De Wit et al., 2012; Heinzel et al., 2017; Hough 

et al., 2016; Kim et al., 2021; Meram et al., 2020; Morein-Zamir et al., 2015; Remijnse et al., 2013; 

Schlösser et al., 2010). Hypoactivation was shown in the posterior cingulate cortex (PCC) and 

premotor cortex (PM; Gu et al., 2007; Koçak et al., 2011; Page et al., 2009; Van Den Heuvel et 

al., 2005). 

Conflicting results were shown in the dorsolateral prefrontal cortex (DLPFC), superior 

frontal gyrus (SFG), superior temporal gyrus (STG), middle temporal gyrus (MTG), anterior 

cingulate cortex (ACC), supplementary motor area (SMA), precuneus (PRCU), and cerebellum 

(Cocchi et al., 2011; De Vries et al., 2013; Fitzgerald et al., 2005; Gu et al., 2007; Han et al., 2011; 

Heinzel et al., 2017; Hough et al., 2016; Kang et al., 2012; Kim et al., 2021; Koch et al., 2012; 

Koçak et al., 2011; Liu et al., 2023; Maltby et al., 2004; Masharipov et al., 2023; Meram et al., 

2020; Morein-Zamir et al., 2015; Nakao et al., 2008; Page et al., 2009; Remijnse et al., 2013; Roth 

et al., 2007; Schlösser et al., 2010; Thorsen et al., 2020; Tolin et al., 2013; Van Den Heuvel et al., 

2005). 

In AN, increased brain activation was reported in the PRCU (Lao-Kaim et al., 2015; Van 

Autreve et al., 2016; Noda et al., 2021), and cuneus (Castro-Fornieles et al., 2019; Noda et al., 

2021). Decreased brain activation was shown in the IFG, MFG, PRG, cerebellum, and lingual 

gyrus (LG; Castro-Fornieles et al., 2019; Sato et al., 2013; Wierenga et al., 2014; Zastrow et al., 
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2009). Conflicting results were seen in the ACC (Lock et al., 2010; Wierenga et al., 2014; Zastrow 

et al., 2009). Both OCD and AN have presented increased overall activation of the insula during 

executive functioning tasks (Heinzel et al., 2017; Kim et al., 2021; Nakao et al., 2008; Roth et al., 

2007; Tolin et al., 2013; Van Autreve et al., 2016). 

Brain Activation and Executive Function Tasks 

Brain Activation during Go/No-Go Task 

Seven studies have used the go/no-go task to measure executive functioning in OCD. Out 

of these studies, the most reported brain regions were the ACC (n = 5), thalamus (n = 4), caudate 

(n = 4). Other brain areas included the posterior cingulate (n = 3), precuneus (n = 3), insula (n = 

2), and middle temporal gyrus (n = 2). Three studies have reported more activation in OCD patients 

compared to healthy controls in the ACC (Maltby et al., 2004; Morein-Zamir et al., 2015; Tolin et 

al., 2013); whereas two studies have reported less activation (Masharipov et al., 2023; Page et al., 

2009). This was also shown in the caudate nucleus (CN), in which two studies have reported 

hyperactivity in OCD (Masharipov et al., 2023; Roth et al., 2007) and two other studies have 

reported hypoactivity in OCD (Masharipov et al., 2023; Page et al., 2009). Of the studies that 

reported activation in the thalamus, two have reported more activation in healthy controls 

compared to OCD patients (Masharipov et al., 2023; Page et al., 2009), and only one study has 

reported variable activity levels (Morein-Zamir et al., 2015). 

In terms of research pertaining to AN patients, three studies have applied the go/no-go task 

and have reported distinct brain activations. Two studies have identified heightened activity 

compared to healthy controls and one study has reported the contrary. For instance, Lock et al. 

(2010) have reported elevated activity in AN (binge-eating type) compared to HC in the following 

brain areas: PRG, ACC, MTG, STG, hypothalamus, and DLPFC. On the other hand, heightened 

activity in the cuneus and precuneus were reported by Noda et al. (2021). With regards to low- 

level activation compared to HC, the amygdala and hippocampus were reported (Suttkus et al., 

2021). 

Taking a closer look at between-group comparisons, similar brain regions but with distinct 

neural activity is shown. These include the following: MTG, ACC, PRCU, PoCG, CN, LG (Lock 

et al., 2010; Maltby et al., 2004; Masharipov et al., 2023; Morein-Zamir et al., 2015; Noda et al., 

2021; Page et al., 2009; Roth et al., 2007; Tolin et al., 2013). 

Brain Activation during Stroop Task 

Overall, only two studies addressing OCD have assessed executive functioning through the 

Stroop task. There was no consensus on brain regions reported. Through ROI analysis, Schlösser 

et al. (2010) reported elevated activity in OCD in the dACC, DLPFC, PRG, SFG, MFG, SPL, and 

IPL, and reduced activity levels in the occipital lobe. In contrast, Page et al. (2009) reported higher 

activity in posterior cingulate gyrus (PCG) and cerebellum, and reduced activity in the precuneus, 

MTG, STG, STJ, IPJ, and SPL. 

Brain Activation during Stop-Signal Task 

Three studies (one used ROI analysis and the other whole-brain analysis) presented distinct 

neural activity in OCD patients during stop-signal tasks. Essentially, de Wit et al.’s (2012) findings 

suggest that OCD patients exhibit higher brain activity in the pre-SMA compared to controls, and 
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lower brain activity in the IFG and inferior parietal cortex (IPC). Through whole-brain analysis, 

brain regions that exhibit greater activation in OCD include the parahippocampal gyrus (PHG), 

SPC, and cerebellum (Kang et al., 2012). Moreover, healthy controls showed greater neural 

activations compared to patients in the middle temporal cortex (MTC), middle occipital cortex 

(MOC), PRG, superior temporal cortex (STC), ACC, CN, putamen, fusiform face area (FFC), 

calcarine (CALC), mid-cingulate cortex (MCC), and cerebellum (Kang et al., 2012). During 

successful inhibition, HC>OCD results were found in the IFG, hippocampus, MCC, and precuneus 

(Thorsen et al., 2020). During failed inhibition, HC>OCD results were found in the dmPFC, IFG, 

operculum and white matter (Thorsen et al., 2020). Their study also examined group differences 

in right and left amygdala connectivity during successful inhibition. OCD>HC results were found 

in right amygdala connectivity with pre-SMA, IFG, MePFC, MTG, MOG, CN, and putamen. Left 

amygdala connectivity was observed in MePFC, IFG, calcarine sulcus and white matter (Thorsen 

et al., 2020). HC>OCD were only found in right amygdala connectivity with hippocampus (tail), 

precuneus, and white matter (Thorsen et al., 2020). 

Comparatively, Wierenga et al. (2014) aimed to analyse executive functioning in anorexia 

nervosa during the stop-signal task. Neuroimaging results demonstrate reduced neural activation 

in AN adolescents compared to healthy adolescents in many brain regions including the ACC, 

MFG, and PCC, with patients not presenting post-error slowing (Wierenga et al., 2014). 

Brain Activation during Wisconsin Card Sorting Task 

Only two studies (out of 32 included studies) were found to apply the WCST to measure 

executive functioning in OCD patients. Analyses reveal that OCD patients exhibit hyperactivation 

in various brain regions compared to controls. Many activations were reported, spanning across 

the frontal, parietal and occipital regions known for sensorimotor and cognitive processing (Kim 

et al., 2021). Comparatively, the PRCU, ANG, IFG have been implicated in both OCD and AN 

patients. Both PRCU and ANG have been shown to be hyperactivated in both patient groups when 

compared to controls (Kim et al., 2021; Lao-Kim et al., 2015). The IFG revealed inverse activation 

patterns, with OCD showing hyperactivation and AN showing hypoactivation when compared to 

controls (Kim et al., 2021; Sato et al., 2013). Interestingly, a recent study has reported no 

significant between-group differences amongst AN, OCD and HC adolescents in brain activation 

during WCST (Bohon et al., 2019). 

Brain Activation during N-Back Task 

Findings reveal common hyperactivation of the PFC, STG, PRCU in OCD compared to 

healthy controls (De Vries et al., 2013; Heinzel et al., 2017; Meram et al., 2020; Nakao et al., 2008; 

Vanderwee et al., 2003). Moreover, Nakao et al.’s (2008) study revealed hyperactivation of the 

DLPFC, insula, and cuneus. With regards to heightened activity in healthy controls compared to 

OCD patients, only two studies (out of six) have reported significant results (Heinzel et al., 2017; 

Koch et al., 2012). Such results were observed in regions related to visual, motor and emotional 

processing such as SMA, IOL, PoCG, CN, and amygdala (Heinzel et al., 2017). Interestingly, no 

significant between-group differences were found between AN and HC (Lao-Kaim et al., 2013). 

Brain Activation during Task-Switch and Set-Shift Tasks 

Distinct brain activations have been reported during task-switching in OCD. The PoCG 

was shown to be hyperactive in OCD compared to HC, according to Remijnse et al. (2013) and 
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Liu et al. (2023). Remijnse et al. (2013) have reported more activation in the ACC and putamen 

and less activation in the anterior prefrontal cortex (APFC). Although Liu et al. (2023) found no 

hypoactivation in OCD, they did report hyperactivation in the precuneus, middle occipital cortex 

(MOC), middle cingulate gyrus (MCG), and superior parietal cortex (SPC). Moreover, more brain 

activity in HC compared to OCD was shown in the following areas: middle temporal gyrus (MTG), 

STG, occipital lobe (OL), ACC (rostral and dorsal), PCC, MeFC, VLPFC, PMC, CN, OFC, 

parietal lobe (PL), uncus, thalamus and hippocampus (Gu et al., 2007; Han et al., 2011). With 

regards to OCD, patients have shown increased activation in the ventromedial prefrontal cortex 

and the orbitofrontal cortex during task-switch tasks (Gu et al., 2007). Hyperactivation was 

reported in the SPL and insula, which was associated with slower reaction times (Liu et al., 2023). 

This suggests the need for more brain activity to participate in the task. 

During set-shifting, frontal, parietal, and occipital subregions have mainly been reported. 

For instance, AN patients have exhibited more activation in parietal subregions such as the 

precuneus, IPL, SPL, SMG (Van Autreve et al., 2016); occipital subregions such as the cuneus and 

calcarine cortex (De Vries et al., 2013); and in other areas like the insula and dorsal-premotor cortex 

(PMD; Van Autreve et al., 2016). With regards to less brain activation in AN compared to HC, 

occipital subregions such as inferior occipital (IO), middle occipital (MO), calcarine, lateral 

fusiform and lingual gyrus; frontal subregions such as the MFG, IFG, and PCG; and other regions 

such as the cerebellum have been reported (Castro-Fornieles et al., 2019). 

Brain Activation during Tower of London Task 

Through the Tower of London task (TOL), van den Heuvel et al. (2005) have reported 

greater brain activation in OCD in the following areas: VLPFC, anterior temporal cortex (ATC), 

cingulate cortex, PHG, and brainstem. Oppositely, hypoactivation was shown in DLPFC, MFC, 

precuneus, PMC, IPC, CN, and putamen (Vaghi et al., 2017; Van Den Heuvel et al., 2005). Also, 

Kim et al. (2020) have reported reduced functional connectivity between DAN and DMN and 

LFPN networks in OCD. 

Brain Activation during other Executive Function Tasks 

The following studies have used other executive function tasks to report brain activity in 

OCD. Differently, Koçak et al. (2011) have applied an Imagination, Suppressing, and Earsing task 

to measure executive function-related brain activity in OCD. Overall, healthy controls have 

exhibited more brain activation in the PCC, SFG, and IPL compared to OCD (Koçak et al., 2011). 

No hyperactivation in OCD was reported. 

Conversely, the opposite effect was found during an item-recognition task, with OCD 

presenting increased brain activation over HC. This increased brain activation was specific to the 

precentral sulcus, IPC, IFG, and IFS (Henseler et al., 2008). 

During the Flanker task, differential activation patterns in neighbouring subregions were 

reported. For instance, the rostral and subgenual part of the ACC was more active in OCD relative 

to HC, in contrast to the dorsal part of the ACC, where HC showed more active relative to OCD 

(Fitzgerald et al., 2005; Grützmann et al., 2014). Other brain areas that displayed OCD>HC include 

the MeTG, anterior insula (AIC), SFG, IFG, SMA and amygdala (Fitzgerald et al., 2005; 

Grützmann et al., 2014). Brain areas that exhibited HC>OCD include the pre-SMA, SMA, and 

STG (Fitzgerald et al., 2005). 
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In Cocchi et al.’s (2011) study, they have applied the Flanker task, along with the Stroop 

and Simon tasks and have reported brain regions that were commonly activated during these tasks. 

Essentially, they reported greater brain activation in OCD relative to HC in brain regions involved 

in the paralimbic and sensorimotor networks. These regions include the anterior insular, pre-SMA, 

SMA, sensorimotor cortex, and primary motor cortex (Cocchi et al., 2011). Mainly brain regions 

included in the salience network and default mode network were reported to be more activated in 

HC relative to OCD. These regions include the MeFC, dPFC, dACC, and MCC (Cocchi et al., 

2011). 

With regards to AN-focused studies, studies that have applied the target-detection task and 

the embedded figures task have not reported any increased brain activity in AN (Leslie et al., 2021; 

Zastrow et al., 2009). During target-detection, the following brain areas were reported for HC>ED: 

MeFG, MFG, ACC, PoCG, PCG, thalamus, subthalamic nucleus, putamen, globus pallidum, and 

cerebellum (Zastrow et al., 2009). During an implicit sequence learning task, only between-group 

differences were found in the thalamus, with more activation shown in HC than AN (Firk et al., 

2015). 

DISCUSSION 

The aim of this systematic review was to examine executive function-related brain activity 

in anorexia nervosa and obsessive-compulsive disorder. Throughout research, both disorders have 

shown executive dysfunction, which has been used to explain the manifest clinical characteristics 

(Del Casale et al., 2015; Diaz-Marsa et al., 2022; Kuelz et al., 2003; Martínez-Esparza et al., 2021). 

There are many notions that there is a possibility of shared neural mechanisms due to shared 

symptomatology between the two (Altman & Shankman, 2009; Gershkovich et al., 2017; Hoffman 

et al., 2012). The results of this review reveal distinctive neural mechanisms for each disorder. 

This is consistent with Thomas et al.’s (2022) review, in which AN and OCD may be utilizing 

different neural pathways for each executive function domain. They highlight that despite both 

presenting similar behavioural impairments, the way their brain adapts or compensates for 

executive dysfunction is different. Li et al.’s (2023) meta-analysis has also shown that both 

disorders present disorder-specific brain activation during inhibition. 

The current review has found distinct brain activity when comparing the research based on 

tasks. Contrasting brain activation was observed when looking at within-group comparisons for 

the same tasks. For instance, research that used the go/no-go task to measure executive functioning 

in OCD have reported obverse results in areas such as the ACC, CN, and thalamus. Between-group 

comparisons for tasks were almost implausible due to research utilizing diverse tasks for each 

disorder. 

When looking at neural activity during the n-back task, most studies have shown agreeable 

results regarding the correlation between task difficulty or working memory load and brain 

activation. For instance, during easier trials of the n-back task, OCD patients have shown 

hyperactivation of many brain areas such as the dACC, SMA, and IPL (De Vries et al., 2013; Koch 

et al., 2012; Vanderwee et al., 2003). However, this hyperactivation reduces during harder levels, 

revealing notions that these brain areas do not adjust well to changes in task difficulty (De Vries 

et al., 2013; Heinzel et al., 2017; Koch et al., 2012). 

Many studies have suggested the notion of a compensatory mechanism during prolonged 

hyperactivation of frontoparietal areas (De Vries et al., 2013). For example, van der Wee et al. 



  
 

107 

 

(2003) have reported hyperactivation in the ACC during all n-back task levels, suggesting a 

possibility of compensation due to disturbed executive functioning other than working memory. 

Similar suggestions have been proposed by De Vries et al., (2013) in the DLPFC, pre-SMA, and 

precuneus. Interestingly, Koch et al. (2012) have reported a non-linear association between task 

difficulty and activation in the ACC (particularly in the dorsal area). This contrast with van der 

Wee et al.’s (2003) study could be due to differences in the nature of the n-back task (i.e., spatial 

or verbal). 

Studies assessing task-switch or set shifting have noted a disintegration or conflict between 

internal and external models. In anorexia nervosa, higher activation in the precuneus, cuneus, 

lingual gyrus and insula during switching tasks is explained by higher self-referential processing 

and internal sensations, and less attention on external stimuli (Castro-Fornieles et al., 2019; Van 

Autreve et al., 2016). Similarly, reduced anticorrelation between the FPN and DMN in OCD is 

explained as patients' inability to disengage from internal thoughts during a task (Liu et al., 2023). 

Through the Tower of London task (TOL), studies have suggested the notion of shifting 

from goal-directed planning to habitual responses. Vaghi et al. (2017) have reported reduced 

activation of the DLPFC, with weaker connections with putamen during the Tower of London 

task. This could suggest failure of the top-down control and could potentially explain the change 

from goal-directed planning to habitual responses. Furthermore, van den Heuvel et al.’s (2005) 

study has shown increased brain activity in the VLPFC, ACC, PHC, ATC, and brainstem, 

particularly as the task difficulty increases. 

Moreover, studies have reported a disconnection between initial learning and cognitive 

flexibility. Particularly, AN patients have shown hyperactivation in the precuneus during the first 

trial of a switching task, suggesting that patients are able to learn new associations quickly (Lao- 

Kim et al., 2015). However, this pattern reduces in the second trial. Lao-Kaim et al. (2015) reported 

hypoactivation in the caudate nucleus after learning a new rule, suggesting a preservation error. 

This is further expanded through Sato et al.’s (2013) study, in which patients showed 

hypoactivation in the parahippocampal cortex and ventrolateral prefrontal cortex. This may 

suggest reduced ability to plan future events. 

Additionally, studies report that OCD may present an over-active error-monitoring system 

and generate a greater affective response to errors or conflicting stimuli. Of particular interest, 

hyperactivation of the ACC has been reported by three studies. Schlösser et al. (2010) particularly 

noticed increased activation in the dorsal part of the ACC. Fitzgerald et al. (2005) and Maltby et 

al. (2004) have reported higher activation in the rostral part of the ACC, suggesting that OCD 

patients posit high sensitivity to errors and generate greater affective responses. Also, Maltby et 

al. (2004) have noted that higher activation in the posterior cingulate could offer two explanations: 

OCD patients perceive conflict or error monitoring tasks to be highly emotional or that there is a 

discrepancy between expected and predicted outcomes, resulting in higher prediction errors. 

Contrastingly, Wierenga et al. (2014) and Suttkus et al. (2021) have reported a hypoactive 

error-processing control and emotional system during go/no-go and stop-signal tasks in anorexia 

nervosa. Particularly, hypoactivation was shown in the MFG and PCC, suggesting that patients do 

not monitor their mistakes (Wierenga et al., 2014). Also, patients have shown less activation in the 

amygdala and hippocampus compared to healthy controls, suggesting that patients are less 

emotionally sensitive to errors (Suttkus et al., 2021). Reduced error-monitoring in AN could be 

explained by an overall diminished activity of the cognitive control system. Research has proposed 



  
 

108 

 

that altered activation of ACC during inhibition and altered error-monitoring could explain that 

patients with AN may engage in self-control processes that perpetually subside receptivity to errors 

(Geisler et al., 2017). 

Most reported brain region among all studies was the ACC. Previous research has proposed 

that the ACC, specifically the dorsal area, plays a core role in inhibitory cognitive control 

(Salehinejad et al., 2021). Propositions have also suggested that activation of the ACC is required 

when elevated level of control and conflict information processing is needed (Braver et al., 2001). 

That is, the ACC signals the conflict information processing to other regions involved in the 

cognitive control network; thereafter, these brain regions activate task-relevant information and 

inhibit task-irrelevant information (Botvinick et al., 2001; Braver et al., 2001). Moreover, it is 

postulated that the dACC is involved in the consolidation of reinforcement history, goal-driven 

efficiency and aversive anticipation (Andrzejewski et al., 2019; Botvinick et al., 2001; Liu et al., 

2024; Shenhav et al., 2013; Shenhav et al., 2016; Yu & Desrivières, 2023). Cingulate abnormalities 

in OCD suggests that patients have excessive or disproportionate amount of error or conflicting 

monitoring (Zhao et al., 2023). Zhao et al., (2023) explain OCD as misattribution of pertinence to 

neutral or harmless stimuli due to disruptions in the salience network (particularly the dACC and 

anterior insula). When looking at cingulate-subcortical circuits, it has been suggested that OCD is 

a result of overreliance of the direct pathway. In other words, the direct pathway is known for 

supporting and enacting certain behaviours; whereas the indirect pathway is known for inhibiting 

the direct pathway during moments when changing or switching a behaviour is needed 

(Salehinejad et al., 2021). Hence, accounts denote OCD to be a disorder of arbitration (Lee et al., 

2014; Robbins, 2024). 

In respect to preliminary research analysing ACC activation in AN, inferences posit an 

aberrant self-control and self-referential system (Lee et al., 2013; Northoff & Bermpohl, 2004; 

Northoff et al., 2006). For instance, synchronous activity between the dACC and the retrosplenial 

cortex in AN signifies heightened introspective cognition (Lee et al., 2013). Such results propose 

a crucial role of the dACC in the cognitive control of appetite and body image. Suggestions that 

AN can be characterized as a disorder of excessive self-control and suppression of instinctive 

processes were given (Lee et al., 2013). This is further expanded through the connectivity between 

the ventral striatum, which is associated with value assignment and prediction error; the vmPFC, 

which is associated with the conciliation of subjective value and learning; and the dACC, which 

is associated with adaptive goal-directed behaviour and erroneous actions (Lee et al., 2013; 

Northoff & Bermpohl, 2004). Accordingly, hypoactivation in the ACC during inhibition could 

suggest diminished ability towards adaptive control, detecting erroneous or conflicting cues, and 

weighing reinforcement history and value assignment functionally (Lee et al., 2013). 

The evidence gathered from the current review has several limitations. The first limitation 

is the lack of consistent experimental paradigm in assessing executive functioning. Such limitation 

has been mentioned in prior reviews (Thomas et al., 2022). Therefore, it is not a surprise that the 

studies would report different brain area activations. Moreover, the inclusion of studies published 

in English only and with most studies using WEIRD populations could potentially lead to missed 

insights and overgeneralization of results. Also, only one study has assessed the difference between 

AN and OCD patients concurrently, with the rest of the studies have focused on only one 

population (Bohon et al., 2019). Interestingly, this study has reported no significant neural 

difference between AN, OCD and HC groups (Bohon et al., 2019). This could either be interpreted 

that there truly is no difference between these populations or that it is due to the task used in the 
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study. Therefore, more research is required to assess all groups concurrently with the same task; 

rather than trying to compare results based on studies who have adopted different experimental 

methodologies. 

The current review has highlighted the need for an exhaustive delineation of the neural 

mechanisms underlying executive functioning tasks in AN and OCD. Although between-group 

comparisons on neural activity were difficult, the current review reveals a common profile of 

reduced integration/consensus between internal and external world models and increased self- 

referential processing. Such results push forward research towards assessing executive function, 

its relation to reinforcement learning and whether AN and OCD differ in this context. Perhaps 

applying methods of predictive coding or active inference (Parr et al., 2022; Redish & Gordon, 

2022) could offer new insights on how executive function is truly represented in the brain for both 

groups. 
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Appendix A 

Figure 1. PRISMA Flow Diagram for fMRI studies that examined executive function tasks in AN patients 
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Figure 2. PRISMA Flow Diagram for fMRI studies that examined executive function tasks in OCD patients 
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Appendix B 

Table 1. fMRI Studies examining executive function tasks in OCD patients that were included in the current review 

 Study  Samp
le 

   fMRI Fo 

 Authors N  M/F Age Task Analysis OCD>HC HC>OCD 

 

1 

 

Kim et al., 2021 

 

3

0 

 
3
0 

 OC

D 
27/3 

H

C 

29/1 

 

25.0 ± 5.2 

 
22.8 ± 2.1 

 

WCST 
 

ROI; Whole-Brain 

Analysis 

 

31 

 

- 

 

2 Gu et al., 

2007 

OCD 

21 18/3 23.6 ± 

4.5 

HC 

21 18/3 24.8 ± 

3.7 

OCD 

Task-Switch ROI; Whole-Brain Analysis - 21 

3 Vanderwee et al., 2003 
11 0/11 34.1 ± 

9.6 

HC 

11 0/11 34.8 ± 

9.7 

N-Back ROI; Whole-Brain Analysis 2 - 

 
 

 

HC 

 

 

 

HC 

 

OCD 

4 Nakao et al., 2008 
40 16/24 33.3 ± 8.9 

N-Back 

25 10/15 30.9 ± 7.1 

 

Whole-Brain Analysis 

 

4 

 

- 

OCD 

5 de Wit et al., 2012 
41 21/20 38.6 ± 9.8 

Stop-Signal 

37 18/19 39.7 ± 11.6 

OCD 

 

ROI 

 

1 

 

2 

6 Tolin et al., 2013 
24 18/6 33.54 ± 13.03 

Go/No-Go 

24 4/20 51.29 ± 9.88 

ROI; Whole-Brain Analysis 1 - 

OCD 
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HC 

 

 

 

HC 

  
OCD 

8 Koçak et al., 2011 
12 6/6 27 ± 

5.80 

HC 

 

Imagination, 

Suppression, 

and Erasing 

Cards 

ROI; Whole-Brain Analysis - 6 

9 HC 

12 6/6 25.08 ± 3.32 

Remijnse et al., 2013 
18 

OCD 

4/14 
33 (10-54) 

Task-Switch Whole-Brain Analysis 3 1 
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10 Page et al., 

2009 

29 9/20 33 (22-

53) OCD 

10 10/0 39.1 ± 10.2 

HC 

11 11/0 34.1 ± 10.1 

OCD 
11 

Hough et al., 2016 
17 8/9 36.1 ± 10.4 

HC 

25 12/13 44.8 ± 16.2 

OC

D 

HC 

 

 

HC 

18 12/6 24.7 ± 2.7 

 

14 

 

Henseler et al., 2008 

 

11 

OC
D 

n/a 

HC 

 

32.64 ± 7.17 
 

Item-Recognition 

 

ROI; Whole-Brain Analysis 

 

10 

 

- 

11 n/a 33.73 ± 15.29 

 OCD  

15 Maltby et al., 2004 
14 5/9 

HC 

39.36 ± 13.66 
Go/No-Go ROI 7 - 

14 5/9 36.55 ± 11.36 

 OCD  

16 Morein-Zamir et al., 2015 
19 5/14 

HC 

37.79 ± 10.10 
Go/No-Go ROI; Whole-Brain Analysis 3 13 

19 5/14 36.16 ± 11.26 

Go/No-Go; Stroop Whole-Brain Analysis 7 9 

    

Go/No-Go; Stroop Whole-Brain Analysis 2 - 

 

12 Vaghi et al., 2017 
21 3/18 37.90 ± 14.31 

Tower of London 

21 18/3 36.45 ± 8.54 

ROI; Whole-Brain Analysis - 2 

OCD 

13 Kang et al., 2012 
18 12/6 24.9 ± 5.9 

Stop-Signal 
 

ROI; Whole-Brain Analysis 
 

5 
 

13 
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17 Roth et al., 

2007 

OCD 

12 5/7 37.8 ± 

13.2 

HC 

Go/No-Go Whole-Brain Analysis 4 7 

 
14 6/8 34.9 ± 13.2 

 OCD  

18 Schlösser et al., 2010 
21 5/16 

HC 

31.3 ± 10.2 
Stroop ROI 18 1 

21 5/16 28.8 ± 8.3 

OCD 
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19 Koch et al., 2012 
21 5/16 29.4 ± 

9.4 

HC 

21 5/16 27.5 ± 

6.1 

N-Back ROI 2 1 

 

 

 

 

 

 

 

 

 

 

 

22 van den Heuvel et al., 

2005 

 

 

 

 

 

 

 

 

 

OCD 

22 7/15 21-49 
Tower of London ROI; Whole-Brain Analysis 10 9 

 

 

 

 

 

 

 

 

24 Masharipov et al., 

2023 

 

 

 

 

 

 

OCD 

14 9/5 30.0 ± 

10.6 

HC 

34 10/24 25.9 ± 

5.2 

OCD 

 

 

 

 

 

 

 

 

Go/No-Go ROI; Whole-Brain Analysis - 9 

25 Liu et al., 2023 
42 25/17 21.86 ± 4.85 

HC 

 HC  

22 11/11 23-51 

 OCD  

23 Fitzgerald et al., 2005 
8 6/2 

HC 

27.4 ± 8.5 
Flanker ROI; Whole-Brain Analysis 11 7 

7 5/2 30.0 ± 8.6 

 

 OCD  

20 de Vries et al., 2013 
43 22/21 

HC 

38.1 ± 9.7 
N-Back ROI; Whole-Brain Analysis 3 - 

37 17/20 39.2 ± 11.5 

 OCD  

21 Cocchi et al., 2011 
17 8/9 

HC 

32.8 ± 10.8 
Stroop; Simon; Flanker ROI; Whole-Brain Analysis 6 5 

19 10/9 30.6 ± 7.2 
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48 21/27 20.65 ± 

2.10 

Task-Switch ROI; Whole-Brain Analysis 7 - 

 OCD  

26 Meram et al., 2020 
28 10/18 

HC 

16.53 ± 3.07 
N-Back ROI; Whole-Brain Analysis 26 - 

27 10/17 16.32 ± 2.70 

 OCD  

27 Han et al., 2011 
10 9/1 

HC 

23.2 ± 4.5 
Task-Switch ROI; Whole-Brain Analysis - 22 

20 18/2 24.3 ± 2.9 

 

28 Thorsen et al., 

2020 

OCD 

31 12/19 30.19 ± 

9.21 

HC 

Stop-Signal ROI; Whole-Brain Analysis 17 12 
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29 Bohon et al., 

2019 

26 8/18 31 ± 

10.73 

OCD 

11 0/11 15.64 ± 

2.01 

HC 

24 0/24 15.29 ± 

1.65 

OCD 

 

 

 

WSCT Whole-Brain Analysis - - 

30 Kim et al., 2020 
17 12/5 26.4 ± 

6.0 

HC 

21 11/10 26.0 ± 

5.3 

OCD 

31 Grützmann et al., 2014 
84 39/45 31.6 ± 

9.5 

HC 

99 41/58 31.4 ± 

9.7 

Tower of London Whole-Brain Analysis 4 - 

 

 

 

Flanker Whole-Brain Analysis 2 - 
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Table 2. fMRI Studies examining executive function tasks in AN patients that were included in the current review 
Study Sam

ple    fMRI  Foc
i  

 Authors N  M/
F 

Age Task Analysis AN>H
C  HC>A

N 

 

1 

 

Wierenga et al., 2014 

 

11 

  

0/1

1 

AN 

16.0 ± 2 .0 
HC 

 

Stop-Signal 
 

ROI; Whole-Brain 

Analysis 

 

5 

 
 

11 

12  0/1

1 

14.9 ± 1.8      

 

2 

 

Lao-Kaim et al., 2015 

 

32 

  

0/3

2 

AN 

18-41 
HC 

 

WCST 

 

Whole-Brain 

Analysis 

 

2 

 
 

- 

32  0/3

2 

22-46      

 

3 

 

van Autreve et al., 

2016 

29   

0/2

9 

AN 
22 ± 6 AN-R; 24 ± 4 

AN-BP HC 

 

Set-Shift 

 

ROI; Whole-Brain 

Analysis 

 

12 

 
 

- 

15  0/1

5 

22 ± 4      

 

4 

 

Castro-Fornieles et al., 

2019 

 

30 

  

0/3

0 

AN 

14.9 ± 1.3 
HC 

 

Set-Shift 

 

ROI; Whole-Brain 

Analysis 

 

3 

 
 

15 

16  0/1

6 

15.3 ± 1.4      

 

 

5 

 

 

Sato et al., 2013 

 

15 

 
 

0/1

5 

AN 

23+/- 7 AN; 21± 9 

AN-R; 26 ± 9 

AN-BP; 

 

 

WCST 

 

 

ROI; Whole-Brain 

Analysis 

 

 

- 

  

 

3 

15  0/1
5 

HC 
22 ± 3      

 

6 

 

Zastrow et al., 2009 

 

15 

  

0/1

5 

AN 

24.2 ± 2.3 
HC 

 

Target-

Detection 

 

Whole-Brain 

Analysis 

 

- 

 
 

29 

15  0/1 23.1 ± 3.6      
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5 

 

7 

 

Lock et al., 2010 

 

27 

 
 

0/2

7 

AN 

15.02 ± 1.74 AN-R; 

17.26 ± 1.23 

AN-BP/BN 

 

 

Go/No-Go 

 

 

ROI; Whole-Brain 

Analysis 

 

 

6 

  

 

- 

13  0/1
3 

HC 
15.93 ± 1.39      

 

8 

 

Noda et al., 2021 

 

23 

  

0/2

3 

AN 

37.04 ± 9.88 
HC 

 

Go/No-Go 

 

Whole-Brain 

Analysis 

 

4 

 
 

- 

17  0/1

7 

36.24 ± 10.59      

 

9 

 

Suttkus et al., 2021 

 

16 

  

2/1

4 

AN 

24.88 ± 7.85 
HC 

 

Go/No-Go 

 

Whole-Brain 

Analysis 

 

- 

 
 

2 

21  2/1

9 

26.29 ± 6.9      

 

10 

 

Bohon et al., 2019 

 

14 

  

0/1

4 

AN 

15.79 ± 1.93 
HC 

 

WCST 

 

Whole-Brain 

Analysis 

 

- 

 
 

- 

24  0/2

4 

15.29 ± 1.65      

AN 
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11 Lao-Kaim et al., 2013 31 n/a 18-46 N-Back ROI; Whole-Brain Analysis - - 
HC 

31 n/a 22-34 

AN 

12 Firk et al., 2015 19

 0/19 

15.9 ± 

1.5 

HC 

Implicit Sequence Learning ROI; Whole-Brain 

Analysis - 1 

20 0/20 15.9 ± 1.9 

AN 

13 Leslie et al., 2021 
19 0/19 

HC 
16-25 

Embedded Figures Task ROI; Whole-Brain 

Analysis - - 

20 0/20 16-25 
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Appendix C 

Figure 1. Common Brain Area Activation Patterns in Obsessive-Compulsive Disorder. 

 

 

Note. The figure shows brain area activations that were commonly reported by the included studies. 

Areas shaded in blue represent hypoactivation (OCD<HC) and areas shaded in red represent 

hyperactivation (OCD>HC). Brain areas that were commonly reported, but with inconsistent brain 

activation patterns (i.e., some studies reported hypoactivation, while others reported 

hyperactivation) were shaded in green. 

PM: pre-motor area, PCC: posterior cingulate cortex, IFG: inferior frontal gyrus, MFG: middle 

frontal gyrus, PRG: precentral gyrus, PoCG: postcentral gyrus, IPL: inferior parietal lobule, SMG: 

supramarginal gyrus, pre-SMA: pre-supplementary motor area, MTG: middle temporal gyrus, 

STG: superior temporal gyrus, DLPFC: dorsolateral prefrontal cortex, SFG: superior frontal gyrus, 

ACC: anterior cingulate cortex, SMA: supplementary motor area, PRCU: precuneus. Created in 

BioRender. Sayed, M. (2025) https://BioRender.com/z92i759 
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Figure 2. Common Brain Area Activation Patterns in Anorexia Nervosa. 

 

 

 

Note. The figure shows brain area activations that were commonly reported by the included studies. 

Areas shaded in blue represent hypoactivation (AN<HC) and areas shaded in red represent 

hyperactivation (AN>HC). Brain areas that were commonly reported, but with inconsistent brain 

activation patterns (i.e., some studies reported hypoactivation, while others reported 

hyperactivation) were shaded in green. 

IFG: inferior frontal gyrus, MFG: middle frontal gyrus, PRG: precentral gyrus, LG: lingual gyrus, 

PRCU: precuneus, CUN: cuneus, ACC: anterior cingulate cortex. Created in BioRender. Sayed, 

M. (2025) https://BioRender.com/z92i759 
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Appendix D 

Table 3. Search Strategy for fMRI studies that examine executive function tasks in OCD or AN patients 

Database Search Query  

#1 
"functional magnetic resonance" [Title/Abstract] OR "fmri" [Title/Abstract] OR 

"neuroimaging" [Title/Abstract] 

"stroop" [Title/Abstract] OR "wisconsin card sorting" [Title/Abstract] OR "trail making" [Title/Abstract] 

OR "go no go" [Title/Abstract] OR "n back" [Title/Abstract] OR "flanker" 
#2 

[Title/Abstract] OR "rey osterrieth complex figure" [Title/Abstract] OR "tower of london" 

[Title/Abstract] OR "task switch" [Title/Abstract] OR "stop signal" [Title/Abstract] 

 

 

PubMed 

"executive function" [Title/Abstract] OR "working memory" [Title/Abstract] OR "plan*" 

#3 
[Title/Abstract] OR "cogntive flexibility" [Title/Abstract] OR "inhibit*" [Title/Abstract] OR 

"inhibitory control" [Title/Abstract] OR "set shift*" [Title/Abstract] OR "attentional control" 

[Title/Abstract] OR "problem solving" [Title/Abstract] OR "error monitor*" [Title/Abstract] 

 

#4 
"ocd" [Title/Abstract] OR "obsess*" [Title/Abstract] OR "compuls*" [Title/Abstract] OR 

"obsessive compulsive disorder" [Title/Abstract] 

#5 
"anorexi*" [Title/Abstract] OR "anorexia nervosa" [Title/Abstract] OR "eating disorder" 

[Title/Abstract] 

#6 #1 AND #2 AND #3 AND #4 

#7 #1 AND #2 AND #3 AND #5 

#1 
(TITLE-ABS-KEY(functional magnetic resonance) OR TITLE-ABS-KEY(fmri) OR TITLE- 

ABS-KEY(neuroimaging)) 

 

(TITLE-ABS-KEY(stroop) OR TITLE-ABS-KEY(wisconsin card sorting) OR TITLE-ABS- 

#2 KEY(trail making) OR TITLE-ABS-KEY(go no go) OR TITLE-ABS-KEY(simon effect) OR 

TITLE-ABS-KEY(simon task) OR TITLE-ABS-KEY(stop signal) OR TITLE-ABS-KEY(n 
back) OR TITLE-ABS-KEY(flanker task) OR TITLE-ABS-KEY(rey osterrieth complex 

figure) OR TITLE-ABS-KEY(tower of london) OR TITLE-ABS-KEY(task switch)) 



NEURAL MECHANISMS IN EXECUTIVE FUNCTION TASKS 137 
 

137 

 

 

Scopus 

(TITLE-ABS-KEY(executive function*) OR TITLE-ABS-KEY(working memory) OR TITLE- 

ABS-KEY(plan*) OR TITLE-ABS-KEY(cognitive flexibility) OR TITLE-ABS- 
#3 KEY(inhibit*) OR TITLE-ABS-KEY(inhibitory control) OR TITLE-ABS-KEY(set shift*) 

OR TITLE-ABS-KEY(attentional control) OR TITLE-ABS-KEY(problem solving) OR 

TITLE-ABS-KEY(error monitor*)) 

(TITLE-ABS-KEY(ocd) OR TITLE-ABS-KEY(obsess*) OR TITLE-ABS-KEY(obsessive 

#4 compulsive disorder) OR TITLE-ABS-KEY(ocd obsessive compulsive disorder) OR TITLE- 

ABS-KEY(compuls*)) 

#5 
(TITLE-ABS-KEY(anorexia) OR TITLE-ABS-KEY(anorexia nervosa) OR TITLE-ABS- 

KEY(anorexi*) OR TITLE-ABS-KEY(eating disorder)) 

#6 #1 AND #2 AND #3 AND #4 

#7 #1 AND #2 AND #3 AND #5  
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Appendix E 

Table 4. Quality Assessment for fMRI studies examining executive function tasks in OCD and AN 

patients 

Author Year 1 2 3 4 5 6 7 8 9 Quality Score 

Kim et al. 2021 2 2 1 1 1 1 1 1 2 12 

Gu et al. 2007 2 2 2 2 2 2 2 2 2 18 
Vanderwee et al. 2003 1 2 2 2 2 2 2 2 2 17 
Nakao et al. 2008 1 2 1 2 1 1 2 2 2 14 
de Wit et al. 2012 2 2 2 2 1 2 2 2 2 17 
Tolin et al. 2013 2 2 1 2 1 2 2 1 1 14 
Heinzel et al. 2017 2 2 1 1 2 1 2 2 2 15 
Koçak et al. 2011 2 2 0 1 2 2 2 2 2 15 
Remijnse et al. 2013 1 2 1 2 2 2 1 1 2 14 
Page et al. 2009 1 2 1 2 2 1 1 1 2 13 
Hough et al. 2016 2 2 2 2 2 2 1 1 2 16 
Vaghi et al. 2017 1 2 2 2 2 2 2 2 2 17 
Kang et al. 2012 1 2 2 2 2 2 2 2 2 17 
Henseler et al. 2008 2 2 2 2 2 2 1 2 2 17 
Maltby et al. 2004 2 2 0 1 2 2 2 2 2 15 
Morein-Zamir et al. 2015 1 2 2 2 2 2 2 2 2 17 
Roth et al. 2007 1 2 2 2 2 2 2 2 2 17 
Schlösser et al. 2010 2 2 2 2 2 2 2 2 2 18 
Koch et al. 2012 2 2 2 2 2 2 2 2 2 18 
de Vries et al. 2013 2 2 2 2 2 2 2 2 2 18 
Cocchi et al. 2011 2 1 2 2 2 2 2 2 2 17 
van den Heuval. 2005 2 2 1 2 2 2 1 2 2 16 
Fitzgerald et al. 2005 1 2 0 2 2 2 2 2 2 15 
Masharipov et al. 2023 2 2 0 2 2 2 1 2 2 15 
Liu et al. 2023 2 2 2 2 2 2 2 2 2 18 
Meram et al. 2020 1 2 0 2 1 2 1 2 2 13 
Han et al. 2011 2 2 0 2 2 2 2 2 2 16 
Thorsen et al. 2020 2 2 2 2 2 2 2 2 2 18 
Bohon et al. 2019 1 2 2 2 2 1 1 1 2 14 
Kim et al. 2020 2 2 0 2 2 2 2 2 2 16 
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Grützmann et al. 2014 1 2 0 2 2 1 2 1 2 13 
Wierenga et al. 2014 2 2 1 2 2 2 2 2 2 17 

Lao-Kaim et al. 2015 2 2 1 2 2 2 2 2 2 17 
Van Autreve et al. 2016 2 2 0 2 2 2 2 1 2 15 
Castro-Fornieles et al. 2019 2 2 1 2 2 2 2 2 2 17 
Sato et al. 2013 1 2 2 2 2 2 1 2 2 16 
Zastrow et al. 2009 1 2 1 1 2 2 1 1 1 12 
Lock et al. 2010 2 1 2 2 1 2 1 1 2 14 
Noda et al. 2021 1 1 1 2 2 2 2 1 1 13 
Suttkus et al. 2021 1 1 1 2 2 2 1 2 2 14 
Lao-Kim et al. 2013 1 1 1 2 2 2 2 2 1 14 
Firk et al. 2015 2 2 2 2 2 1 1 1 1 14 
Leslie et al. 2021 1 1 1 2 2 2 2 2 2 15 
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